home *** CD-ROM | disk | FTP | other *** search
- //$$ example.cpp Example of use of matrix package
-
- #define WANT_STREAM // include.h will get stream fns
- #define WANT_MATH // include.h will get math fns
- // newmatap.h will get include.h
-
- #include "newmatap.h" // need matrix applications
-
- #include "newmatio.h" // need matrix output routines
-
-
- // demonstration of matrix package on linear regression problem
-
-
- void test1(Real* y, Real* x1, Real* x2, int nobs, int npred)
- {
- cout << "\n\nTest 1 - traditional\n";
-
- // traditional sum of squares and products method of calculation
- // with subtraction of means
-
- // make matrix of predictor values
- Matrix X(nobs,npred);
-
- // load x1 and x2 into X
- // [use << rather than = with submatrices and/or loading arrays]
- X.Column(1) << x1; X.Column(2) << x2;
-
- // vector of Y values
- ColumnVector Y(nobs); Y << y;
-
- // make vector of 1s
- ColumnVector Ones(nobs); Ones = 1.0;
-
- // calculate means (averages) of x1 and x2 [ .t() takes transpose]
- RowVector M = Ones.t() * X / nobs;
-
- // and subtract means from x1 and x1
- Matrix XC(nobs,npred);
- XC = X - Ones * M;
-
- // do the same to Y [use Sum to get sum of elements]
- ColumnVector YC(nobs);
- Real m = Sum(Y) / nobs; YC = Y - Ones * m;
-
- // form sum of squares and product matrix
- // [use << rather than = for copying Matrix into SymmetricMatrix]
- SymmetricMatrix SSQ; SSQ << XC.t() * XC;
-
- // calculate estimate
- // [bracket last two terms to force this multiplication first]
- // [ .i() means inverse, but inverse is not explicity calculated]
- ColumnVector A = SSQ.i() * (XC.t() * YC);
-
- // calculate estimate of constant term
- // [AsScalar converts 1x1 matrix to Real]
- Real a = m - (M * A).AsScalar();
-
- // Get variances of estimates from diagonal elements of invoice of SSQ
- // [ we are taking inverse of SSQ - we need it for finding D ]
- Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ;
- ColumnVector V = D.AsColumn();
- Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar();
- // for calc variance of const
-
- // Calculate fitted values and residuals
- int npred1 = npred+1;
- ColumnVector Fitted = X * A + a;
- ColumnVector Residual = Y - Fitted;
- Real ResVar = Residual.SumSquare() / (nobs-npred1);
-
- // Get diagonals of Hat matrix (an expensive way of doing this)
- Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
- DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t();
-
- // print out answers
- cout << "\nEstimates and their standard errors\n\n";
- cout.setf(ios::fixed, ios::floatfield);
- cout << setw(11) << setprecision(5) << a << " ";
- cout << setw(11) << setprecision(5) << sqrt(v*ResVar) << endl;
- // make vector of standard errors
- ColumnVector SE(npred);
- for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
- // use concatenation function to form matrix and use matrix print
- // to get two columns
- cout << setw(11) << setprecision(5) << (A | SE) << endl;
- cout << "\nObservations, fitted value, residual value, hat value\n";
- cout << setw(9) << setprecision(3) <<
- (X | Y | Fitted | Residual | Hat.AsColumn());
- cout << "\n\n";
- }
-
- void test2(Real* y, Real* x1, Real* x2, int nobs, int npred)
- {
- cout << "\n\nTest 2 - Cholesky\n";
-
- // traditional sum of squares and products method of calculation
- // with subtraction of means - using Cholesky decomposition
-
- Matrix X(nobs,npred);
- X.Column(1) << x1; X.Column(2) << x2;
- ColumnVector Y(nobs); Y << y;
- ColumnVector Ones(nobs); Ones = 1.0;
- RowVector M = Ones.t() * X / nobs;
- Matrix XC(nobs,npred);
- XC = X - Ones * M;
- ColumnVector YC(nobs);
- Real m = Sum(Y) / nobs; YC = Y - Ones * m;
- SymmetricMatrix SSQ; SSQ << XC.t() * XC;
-
- // Cholesky decomposition of SSQ
- LowerTriangularMatrix L = Cholesky(SSQ);
-
- // calculate estimate
- ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC));
-
- // calculate estimate of constant term
- Real a = m - (M * A).AsScalar();
-
- // Get variances of estimates from diagonal elements of invoice of SSQ
- DiagonalMatrix D; D << L.t().i() * L.i();
- ColumnVector V = D.AsColumn();
- Real v = 1.0/nobs + (L.i() * M.t()).SumSquare();
-
- // Calculate fitted values and residuals
- int npred1 = npred+1;
- ColumnVector Fitted = X * A + a;
- ColumnVector Residual = Y - Fitted;
- Real ResVar = Residual.SumSquare() / (nobs-npred1);
-
- // Get diagonals of Hat matrix (an expensive way of doing this)
- Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
- DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t();
-
- // print out answers
- cout << "\nEstimates and their standard errors\n\n";
- cout.setf(ios::fixed, ios::floatfield);
- cout << setw(11) << setprecision(5) << a << " ";
- cout << setw(11) << setprecision(5) << sqrt(v*ResVar) << endl;
- ColumnVector SE(npred);
- for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
- cout << setw(11) << setprecision(5) << (A | SE) << endl;
- cout << "\nObservations, fitted value, residual value, hat value\n";
- cout << setw(9) << setprecision(3) <<
- (X | Y | Fitted | Residual | Hat.AsColumn());
- cout << "\n\n";
- }
-
- void test3(Real* y, Real* x1, Real* x2, int nobs, int npred)
- {
- cout << "\n\nTest 3 - QR triangularisation\n";
-
- // QR triangularisation method
-
- // load data - 1s into col 1 of matrix
- int npred1 = npred+1;
- Matrix X(nobs,npred1); ColumnVector Y(nobs);
- X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y;
-
- // do Householder triangularisation
- // no need to deal with constant term separately
- Matrix X1 = X; // Want copy of matrix
- ColumnVector Y1 = Y;
- UpperTriangularMatrix U; ColumnVector M;
- QRZ(X1, U); QRZ(X1, Y1, M); // Y1 now contains resids
- ColumnVector A = U.i() * M;
- ColumnVector Fitted = X * A;
- Real ResVar = Y1.SumSquare() / (nobs-npred1);
-
- // get variances of estimates
- U = U.i(); DiagonalMatrix D; D << U * U.t();
-
- // Get diagonals of Hat matrix
- DiagonalMatrix Hat; Hat << X1 * X1.t();
-
- // print out answers
- cout << "\nEstimates and their standard errors\n\n";
- ColumnVector SE(npred1);
- for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
- cout << setw(11) << setprecision(5) << (A | SE) << endl;
- cout << "\nObservations, fitted value, residual value, hat value\n";
- cout << setw(9) << setprecision(3) <<
- (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn());
- cout << "\n\n";
- }
-
- void test4(Real* y, Real* x1, Real* x2, int nobs, int npred)
- {
- cout << "\n\nTest 4 - singular value\n";
-
- // Singular value decomposition method
-
- // load data - 1s into col 1 of matrix
- int npred1 = npred+1;
- Matrix X(nobs,npred1); ColumnVector Y(nobs);
- X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y;
-
- // do SVD
- Matrix U, V; DiagonalMatrix D;
- SVD(X,D,U,V); // X = U * D * V.t()
- ColumnVector Fitted = U.t() * Y;
- ColumnVector A = V * ( D.i() * Fitted );
- Fitted = U * Fitted;
- ColumnVector Residual = Y - Fitted;
- Real ResVar = Residual.SumSquare() / (nobs-npred1);
-
- // get variances of estimates
- D << V * (D * D).i() * V.t();
-
- // Get diagonals of Hat matrix
- DiagonalMatrix Hat; Hat << U * U.t();
-
- // print out answers
- cout << "\nEstimates and their standard errors\n\n";
- ColumnVector SE(npred1);
- for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
- cout << setw(11) << setprecision(5) << (A | SE) << endl;
- cout << "\nObservations, fitted value, residual value, hat value\n";
- cout << setw(9) << setprecision(3) <<
- (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
- cout << "\n\n";
- }
-
- main()
- {
- cout << "\nDemonstration of Matrix package\n";
-
- // Test for any memory not deallocated after running this program
- Real* s1; { ColumnVector A(8000); s1 = A.Store(); }
-
- {
- // the data
-
- #ifndef ATandT
- Real y[] = { 8.3, 5.5, 8.0, 8.5, 5.7, 4.4, 6.3, 7.9, 9.1 };
- Real x1[] = { 2.4, 1.8, 2.4, 3.0, 2.0, 1.2, 2.0, 2.7, 3.6 };
- Real x2[] = { 1.7, 0.9, 1.6, 1.9, 0.5, 0.6, 1.1, 1.0, 0.5 };
- #else // for compilers that don't understand aggregrates
- Real y[9], x1[9], x2[9];
- y[0]=8.3; y[1]=5.5; y[2]=8.0; y[3]=8.5; y[4]=5.7;
- y[5]=4.4; y[6]=6.3; y[7]=7.9; y[8]=9.1;
- x1[0]=2.4; x1[1]=1.8; x1[2]=2.4; x1[3]=3.0; x1[4]=2.0;
- x1[5]=1.2; x1[6]=2.0; x1[7]=2.7; x1[8]=3.6;
- x2[0]=1.7; x2[1]=0.9; x2[2]=1.6; x2[3]=1.9; x2[4]=0.5;
- x2[5]=0.6; x2[6]=1.1; x2[7]=1.0; x2[8]=0.5;
- #endif
-
- int nobs = 9; // number of observations
- int npred = 2; // number of predictor values
-
- // we want to find the values of a,a1,a2 to give the best
- // fit of y[i] with a0 + a1*x1[i] + a2*x2[i]
- // Also print diagonal elements of hat matrix, X*(X.t()*X).i()*X.t()
-
- // this example demonstrates four methods of calculation
-
- Try
- {
- test1(y, x1, x2, nobs, npred);
- test2(y, x1, x2, nobs, npred);
- test3(y, x1, x2, nobs, npred);
- test4(y, x1, x2, nobs, npred);
- }
- Catch(DataException) { cout << "\nInvalid data\n"; }
- Catch(SpaceException) { cout << "\nMemory exhausted\n"; }
- CatchAll { cout << "\nUnexpected program failure\n"; }
- }
-
- #ifdef DO_FREE_CHECK
- FreeCheck::Status();
- #endif
- Real* s2; { ColumnVector A(8000); s2 = A.Store(); }
- cout << "\n\nChecking for lost memory: "
- << (unsigned long)s1 << " " << (unsigned long)s2 << " ";
- if (s1 != s2) cout << " - error\n"; else cout << " - ok\n";
-
- return 0;
-
- }
-
-